De Camp, W. H. (1973). Acta Cryst. A29, 148-150
Dunitz, J. D. \& White, D. N. J. (1973). Acta Cryst. A29, 93-94.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gilli, G. (1977). ABRAHAMS. Program for calculating half-normal probability plots. Univ. of Ferrara, Italy.
Ianelli, S., Nardelli, M., Belletti, D., Jamart-Grégoire, B., Mouaddib, A. \& Caubère, P. (1993). Acta Cryst. C49, 1380-1384.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kálmán, A., Parkanyi, L. \& Kucsman, A. (1980). Acta Cryst. B36, 1440-1443.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
Nardelli, M. (1983b). Acta Cryst. C39, 1141-1142.
Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1992). SHELXL92. Program for crystal structure refinement. Univ. of Göttingen, Germany.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). THMV. Program for thermal-motion analysis. Univ. of California, Los Angeles, USA.
Zouaoui, M. A., Mouaddib, A., Jamart-Grégoire, B., Ianelli, S., Nardelli, M. \& Caubère, P. (1991). J. Org. Chem. 56, 4078-4081.

Acta Cryst. (1993). C49, 1388-1392

Synthesis and Structure of Strained Polycyclic Cyclobutane-Containing Derivatives

S. Ianelli and M. Nardelli*

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Vale delle Scienze 78, I-43100 Parma, Italy

D. Belletti

Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

B. Jamart-Grégore, N. Brosse and P. Caubère

Laboratoire de Chimie Organique I,
UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France
(Received 18 September 1992; accepted 8 January 1993)

Abstract

The compounds cis,anti,cis-8-methoxytricyclo[6.3.0.$\left.0^{2,7}\right]$ undecan-2,3-diol and cis,anti,cis-tricyclo[6.5.0.0 ${ }^{2,7}$]-tridec-6-en-13-spiro-2'-[1,3]dioxan-1-ol were obtained

by condensation of ketone enolates with cyclohexadiene generated in situ from 1-chlorocyclohexene. X-ray structure analysis established the conformations of the polycyclic systems, the stereochemistry at the ring junctions and the deformations caused by fusion of the rings. The results of the refinements on F and F^{2} are compared.

Comment

It was shown for the first time in a work by Caubère \& Brunet (1972) that condensation of a ketone enolate with cyclohexadiene, generated in situ from 1chlorocyclohexene, leads easily to the synthesis of a methylene cyclobutenol with cis,syn,cis structure. Returning to these reactions with the object of finding a new route to polycyclic cyclopentane derivatives, we performed the reactions shown in the scheme below (PTC = phase transfer catalysis).

Compound (3) has not been obtained previously and its formation can be attributed to the new experimental conditions used here (a temperature lower than 273 K and dimethoxyethane). It was first transformed into the corresponding ether which was bishydroxylated into compound (4) (Minato, Yamamoto \& Tsuji, 1990) whose structure could only be established by X-ray analysis. Using this knowledge, it was possible to infer the structure of (3).

Another reaction we considered was the condensation of the enolate of cycloheptanedione monoketal; although this reaction is much less easy than arynic condensation (Grégoire, Carré \& Caubère, 1986), we succeeded in obtaining compound (5) whose stereochemistry could not be determined easily from classical spectroscopic data and was therefore defined by X-ray analysis.

The present paper reports the structures of compounds (4) and (5) which are good starting materials for further transformations (Jamart-Grégoire, Brosse, Caubère, Ianelli \& Nardelli, 1991), for example those of (5) into the rearranged polycyclic derivatives we are currently investigating.

The ORTEP (Johnson, 1965) projections (Fig. 1) show that both molecules are built up of a tricyclic core with an anti conformation and with cis configurations at the

ISSN 0108-2701 © 1993

Fig. 1. ORTEP projections of the two molecules. Ellipsoids are drawn at the 40% level for (4) and the 50% level for (5).
junctions. In compound (5), a dioxane residue is spirojoined to the cycloheptane ring at the \mathbf{C} atom adjacent to the hydroxyl-substituted junction.

There are four chiral centers in (4) [configurations $R(\mathrm{C} 5), R(\mathrm{C} 6), R(\mathrm{C} 7), R(\mathrm{C} 8)]$ and three in (5) [configurations $S(\mathrm{C} 1), R(\mathrm{C} 2), R(\mathrm{C} 8)]$. In the latter, the enantiomorph is also present since the space group is centrosymmetric; the configurations quoted for the former must be considered only to be relative as the absolute configuration has not been established.

The values of bond distances and angles quoted in Table 2 are as expected, apart from C3-C4 in (4) [1.407 (12) \AA] which is too short, probably as a result of the apparent contraction caused by the high anisotropic thermal motion (or static disorder) of C 3 ($U_{\mathrm{eq}}=0.129 \AA^{2}$). This distance increases to $1.548 \AA$ if the correction for non-correlated motion (Busing \& Levy, 1964) is applied. The anisotropy of the displacement is expressed well by the ratio $r_{\text {max }} / r_{\text {min }}(=5.17)$ of the maximum and minimum principal axes of the ellipsoid.

The relevant conformational features of the rings, together with the dihedral angles formed by the mean planes through the rings are compared in Table 3. The presence of the double bond in the six-membered alkene ring of (5)
reduces its puckering; a comparison with the corresponding values in (4) reveals its influence on the angles and distances of the joined cyclobutane ring.

The system formed by a dioxane residue spiro-joined to a cycloheptane ring, present in (5), is quite similar to the one we described recently (Ianelli et al., 1992). In particular, it is worth noting the narrowing of the angle C1-C13-C12 and the chair conformation of the cycloheptane ring with the local pseudo-symmetry plane running through C 11 and the midpoint of the $\mathrm{C} 1-\mathrm{C} 8$ junction.

The orientation of the methoxy group in (4) is determined mainly by the steric hindrance between the methyl H atoms and the C9 methylene group or the C7-H7 and $\mathrm{Cl}-\mathrm{H} 1 \mathrm{H}$ atoms when the methoxy group is rotated about the $\mathrm{C} 8-\mathrm{O} 3$ bond.

The orientation of the hydroxyl groups in (4) is determined by the hydrogen-bonding interactions in which these groups are involved. An intermolecular hydrogenbond is formed by $\mathrm{O} 1-\mathrm{H} 1\left[\mathrm{O} 1-\mathrm{H} 10.85(3), \mathrm{O} 1 \cdots \mathrm{O}^{\mathrm{i}}\right.$ 2.890 (4), $\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}} 2.04$ (3) $\AA, \mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}} 180(1)^{\circ}$; symmetry code: (i) $\left.-x, \frac{1}{2}+y,-1-z\right]$ and a bifurcated intra-intermolecular hydrogen bond by $\mathrm{O} 2-\mathrm{H} 2$ [O2H2 0.85 (2), $02 \cdots \mathrm{O} 2.722(4), \mathrm{H} 2 \cdots \mathrm{O} 12.41$ (2) \AA, $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 102(1)^{\circ} ; \mathrm{O}_{2} \cdots \mathrm{O} 3^{\mathrm{ii}} 2.941$ (4), H2 $\cdots \mathrm{O}^{\mathrm{ii}}$ 2.11 (2) $\AA, \mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{OB}^{\mathrm{ii}} 165$ (2) ${ }^{\circ}$; symmetry code: (ii) $x, y, z-1]$.

There is no condition for intermolecular hydrogen bonding in (5) so the molecular packing is determined only by van der Waals interactions. The $\mathrm{O} 1-\mathrm{H} 1$ hydroxyl group is involved in an intramolecular interaction with one O atom of the dioxane moiety [$\mathrm{O} 1-\mathrm{H} 10.85(3)$, $\mathrm{O} 1 \cdots \mathrm{O} 3.607$ (3), $\mathrm{H} 1 \cdots \mathrm{O} 3.25$ (3) $\AA, \mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$ $\left.106(2)^{\circ}\right]$.

For all these hydrogen bonds, minima are found in the potential-energy profiles which correspond to the orientations observed in the crystal when only the van der Waals and Coulombic energies (Hagler, Huler \& Lifson, 1974; Dauber \& Hagler, 1980) are considered, assuming fractional point charges of -0.6 and +0.5 e for the O and H atoms, respectively.

Analysis of the anisotropic atomic displacements was carried out in terms of the LST rigid-body model according to Schomaker \& Trueblood (1968) and Trueblood (1978) using the program THMV (Trueblood, 1984). This gave values for the residual index $R_{w U}$ of 0.183 [0.176] and 0.081 [0.100] for compounds (4) and (5), respectively $\left\{R_{w U}=\left[\Sigma(w \Delta U)^{2} / \Sigma\left(w U_{o}\right)^{2}\right]^{1 / 2} ; \quad \Delta U=\right.$ $U_{i j}$ (obs.) $-U_{i j}$ (calc.) $\}$. (In each case, the first figure refers to the U values derived from the refinement on F^{2} and that in square brackets to values derived from the refinement on F.) The values of this index improve to 0.090 [0.097] for (4) and 0.073 [0.089] for (5) if internal motions are considered according to Dunitz \& White (1973). These findings are related to the fact that (unconcerted) anisotropies are more relevant in the former compound $\left(r_{\max } / r_{\text {min }}=1.61-5.17\right.$ [1.54-4.23], average 2.70 [2.67])
than in the latter $\left(r_{\max } / r_{\min }=1.33-2.90\right.$ [1.37-3.16], average 1.94 [2.06]).

Experimental

Compound (4)
Crystal data
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$
$M_{r}=212.29$
Monoclinic
$P 2_{1}$
$a=8.573$ (1) \AA
$b=10.628$ (1) \AA
$c=6.544(1) \AA$
$\beta=105.55(1)^{\circ}$
$V=574.4(1) \AA^{3}$
$Z=2$
$D_{x}=1.228 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens-AED diffractometer $\theta-2 \theta$ scans
1242 measured reflections
1152 independent reflections
864 observed reflections
[$I>2 \sigma(I)]$
$R_{\text {int }}=0.0086$
$\theta_{\max }=69.96^{\circ}$
$\mathrm{Cu} K \alpha$ mean radiation for collection of intensity data

Refinement

Refinement on F^{2}
Final $R 1=0.0486$ for $F_{o}>4 \sigma\left(F_{o}\right)$
$w R 2=0.1219$ for F^{2} data
$S=1.049$ for all F^{2} data
1147 reflections
143 parameters
Only H-atom U 's refined
Calculated weights
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0830 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.020$
$\mathrm{Cu} K \alpha_{1}$ radiation
$\lambda=1.540562 \AA$
Cell. parameters from 30 reflections
$\theta=25-30^{\circ}$
$\mu=0.662 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Small prisms
$0.36 \times 0.33 \times 0.27 \mathrm{~mm}$
Colorless

$$
h=-10 \rightarrow 10
$$

$k=0 \rightarrow 12$
$l=0 \rightarrow 7$
1 standard reflection
monitored every 50 reflections
intensity variation: within statistical fluctuation
$\Delta \rho_{\max }=0.36 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$
Extinction correction:

$$
F_{c}^{*}=k F_{c}\left[1+0.001 F_{c}^{2} \lambda^{3}\right.
$$ $/ \sin (2 \theta)]^{-1 / 4}$

Extinction coefficient: 0.0350 (44)

Atomic scattering factors from International Tables for X-ray Crystallography [1974, Vol. IV, Tables 2.2A, 2.3.1 (O, C) and 2.2C (H)]

Compound (5)

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$
$M_{r}=264.36$
Monoclinic
$P 2_{1} / c$
$a=8.394$ (1) \AA 。
$b=14.260(2) \AA$
$c=12.007$ (1) \AA
$\beta=91.79$ (1) ${ }^{\circ}$
$V=1436.5(3) \AA^{3}$
$Z=4$
$D_{x}=1.22 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Siemens-AED diffractometer
$h=0 \rightarrow 10$
$\theta-2 \theta$ scans
$k=0 \rightarrow 17$
2924 measured reflections
2739 independent reflections
1476 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.0055$
$\theta_{\text {max }}=70.54^{\circ}$
$l=-14 \rightarrow 14$
1 standard reflection monitored every 50 reflections
intensity variation: within statistical fluctuation
$\mathrm{Cu} K \alpha$ mean radiation for collection of intensity data

Refinement

Refinement on F^{2}
Final $R 1=0.0603$ for
$F_{o}>4 \sigma\left(F_{o}\right)$
$w R 2=0.1635$ for F^{2} data
$S=1.064$ for all F^{2} data
2715 reflections
177 parameters
Only H-atom U 's refined
Calculated weights $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1144 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.000$
$\Delta \rho_{\text {max }}=0.267 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.164 \mathrm{e}^{-3}$
Extinction correction:

$$
\begin{aligned}
& F_{c}^{*}=k F_{c}\left[1+0.001 F_{c}{ }^{2} \lambda^{3}\right. \\
&/ \sin (2 \theta)]^{-1 / 4}
\end{aligned}
$$

Extinction coefficient: 0.0008 (6)

Atomic scattering factors from International Tables for X-ray Crystallography [1974, Vol. IV, Tables 2.2A, 2.3.1 (O, C) and 2.2C (H)]

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic thermal parameters $\left(\AA^{2}\right)$
For non-H atoms $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
(4)				
01	-0.0440 (4)	-0.00039	-0.5287 (5)	0.0681 (13)
02	-0.0970 (4)	-0.2530 (4)	-0.5635 (4)	0.0566 (11)
03	-0.2271 (3)	-0.1341 (4)	0.0197 (4)	0.0469 (8)
C1	-0.0211 (5)	-0.0685 (5)	-0.3374 (5)	0.0450 (11)
C2	0.1541 (6)	-0.1020 (7)	-0.2315 (8)	0.0812 (21)
C3	0.1534 (9)	-0.1584 (9)	-0.0116 (12)	0.1290 (34)
C4	0.0585 (6)	-0.2672 (7)	-0.0197 (8)	0.0819 (21)
C5	-0.1007 (5)	-0.2713 (5)	-0.1886 (6)	0.0485 (13)
C6	-0.1236 (5)	-0.1877 (4)	-0.3866 (5)	0.0400 (12)
C7	-0.3004 (4)	-0.1611 (5)	-0.3853 (6)	0.0465 (13)
C8	-0.2606 (4)	-0.2189 (4)	-0.1567 (5)	0.0422 (11)
C9	-0.3922 (7)	-0.3152 (5)	-0.1571 (7)	0.0678 (18)
C10	-0.4487 (8)	-0.3580 (7)	-0.3880 (8)	0.0937 (26)
C11	-0.4375 (6)	-0.2427 (8)	-0.5176 (7)	0.0821 (20)
C12	-0.3526 (5)	-0.0483 (6)	0.0255 (7)	0.0611 (16)
H1	-0.0026 (66)	0.0724 (21)	-0.5020 (11)	0.082 (12)
H2	-0.1245 (60)	-0.2064 (19)	-0.6729 (18)	0.082 (12)
(5)				
O1	0.8710 (2)	0.8432 (2)	0.3257 (2)	0.0724 (8)
02	0.4829 (2)	0.8450 (1)	0.1891 (2)	0.0609 (6)
03	0.5719 (2)	0.8242 (2)	0.3733 (2)	0.0727 (7)
C1	0.7599 (3)	0.8343 (2)	0.2350 (2)	0.0575 (9)
C2	0.7646 (3)	0.7364 (2)	0.1784 (2)	0.0584 (9)
C3	0.8316 (4)	0.6495 (2)	0.2342 (3)	0.0747 (12)
C4	0.8924 (4)	0.5851 (2)	0.1415 (3)	0.0799 (12)
C5	1.0262 (4)	0.6304 (2)	0.0764 (3)	0.0717 (11)
C6	1.0024 (3)	0.7328 (2)	0.0574 (2)	0.0622 (10)
C7	0.8816 (3)	0.7774 (2)	0.0998 (2)	0.0571 (10)
C8	0.8440 (3)	0.8771 (2)	0.1328 (2)	0.0602 (9)
C9	0.7524 (4)	0.9388 (2)	0.0523 (3)	0.0778 (13)
C10	0.7140 (5)	1.0354 (2)	0.0996 (3)	0.0852 (14)
C11	0.5820 (4)	1.0366 (2)	0.1834 (3)	0.0815 (13)
C12	0.6013 (4)	0.9773 (2)	0.2875 (3)	0.0754 (12)

C13	$0.5983(3)$	$0.8720(2)$	$0.2708(2)$	$0.0579(9)$	(5)				
C14	$0.3222(3)$	$0.8595(2)$	$0.2231(3)$	$0.0716(12)$	Ring A	$0.517(3)$	$\Delta_{2}(\mathrm{C} 3-\mathrm{C} 4)=0.060(1)$	Half-chair $\quad A^{\wedge} B=155.5(5)$	
C15	$0.2922(4)$	$0.8062(3)$	$0.3270(3)$	$0.0848(13)$	B	$0.050(1)$	-	-	$B^{\wedge} C=148.4(1)$
C16	$0.4141(4)$	$0.8318(3)$	$0.4148(3)$	$0.0850(14)$	C	$0.775(3)$	$\Delta S(C 11)=0.067(1)$	Chair	$A^{\wedge} C=166.2(1)$
H1	$0.8388(2)$	$0.8119(2)$	$0.3808(2)$	$0.120(16)$	D	$0.523(3)$	-	Chair	$C^{\wedge} D=115.6(1)$

Table 2. Geometric parameters (${ }_{\mathrm{A}}{ }^{\circ}{ }^{\circ}$)

(4)			
$\mathrm{O} 1-\mathrm{C} 1$	1.414 (5)	C5-C6	1.539 (6)
O2-C6	1.419 (5)	C5-C8	1.545 (6)
O3-C8	1.431 (5)	C6-C7	1.545 (6)
O3-C12	1.419 (6)	C7-C8	1.567 (5)
C1-C2	1.518 (6)	C7-C11	1.529 (7)
C1-C6	1.526 (6)	C8-C9	1.523 (7)
C2-C3	1.560 (10)	C9-C10	1.527 (7)
C3-C4	1.41 (1)	C10-C11	1.508 (10)
C4-C5	1.509 (5)		
C8-O3-C12	115.9 (3)	C1-C6-C7	110.9 (4)
O1-C1-C6	107.6 (3)	O2-C6-C7	117.8 (3)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	114.2 (3)	C6-C7-C11	120.0 (4)
C2-C1-C6	110.2 (4)	C6-C7-C8	88.3 (3)
C1-C2-C3	105.3 (4)	C8-C7-C11	104.8 (4)
C2-C3-C4	115.3 (6)	C5-C8-C7	89.2 (3)
C3-C4-C5	116.8 (6)	O3-C8-C7	117.9 (3)
C4-C5-C8	123.5 (3)	O3-C8-C5	110.0 (3)
C4-C5-C6	119.1 (4)	C7-C8-C9	106.9 (3)
C6-C5-C8	89.3 (3)	C5-C8-C9	116.2 (4)
C1-C6-C5	111.4 (3)	O3-C8-C9	114.4 (3)
O2-C6-C5	113.1 (3)	C8-C9-C10	103.9 (4)
O2-C6-Cl	111.7 (3)	C9-C10-C11	105.3 (5)
C5-C6-C7	90.3 (3)	C7-C11-C10	107.3 (4)
(5)			
$\mathrm{O}-\mathrm{Cl}$	1.418 (3)	C4-C5	1.531 (5)
O2-C13	1.410 (3)	C5-C6	1.490 (4)
O2-C14	1.436 (3)	C6-C7	1.314 (4)
O3-C13	1.431 (3)	C7-C8	1.511 (4)
O3-C16	1.434 (4)	C8-C9	1.501 (4)
C1-C2	1.554 (4)	C9-C10	1.528 (5)
C1-C8	1.559 (4)	C10-C11	1.520 (5)
C1-C13	1.533 (4)	C11-C12	1.513 (5)
C2-C3	1.509 (4)	C12-C13	1.515 (4)
C2-C7	1.501 (4)	C14-C15	1.488 (5)
C3-C4	1.542 (5)	C15-C16	1.492 (5)
C13-O2-C14	113.2 (2)	C2-C7-C8	93.2 (2)
C13-O3-C16	115.6 (2)	C1-C8-C7	86.7 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Cl} 3$	108.7 (2)	C7-C8-C9	119.4 (2)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 8$	105.5 (2)	C1-C8-C9	120.0 (2)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	113.0 (2)	C8-C9-C10	113.6 (3)
C8-C1-C13	120.7 (2)	C9-C10-C11	115.0 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 3$	118.2 (2)	C10-C11-C12	118.6 (3)
C2-C1-C8	89.3 (2)	C11-C12-C13	116.4 (3)
C1-C2-C7	87.2 (2)	C1-C13-C12	111.9 (2)
C1-C2-C3	123.9 (2)	O3-C13-C12	111.2 (2)
C3-C2-C7	110.9 (2)	O3-C13-C1	103.7 (2)
C2-C3-C4	107.2 (3)	O2-C13-C12	111.8 (2)
C3-C4-C5	112.5 (3)	O2-C13-C1	107.7 (2)
C4-C5-C6	113.3 (3)	O2-C13-O3	110.3 (2)
C5-C6-C7	121.1 (3)	O2-C14-C15	110.5 (2)
C2-C7-C6	125.7 (3)	C14-C15-C16	109.7 (3)
C6-C7-C8	136.6 (3)	O3-C16-C15	110.9 (3)

Table 3. Relevant conformational parameters $\left({ }_{\mathrm{A}}{ }^{\circ},{ }^{\circ}\right)$ of the rings in the two compounds
Q_{T} is the total puckering amplitude (Cremer \& Pople, 1975) and DAP the displacement asymmetry parameter (Nardelli, 1983b).

	Q_{T}	DAP	Conformation Dihedral angle	
(4)				
Ring A	$0.544(6)$	$\Delta_{2}(\mathrm{Cl}-\mathrm{C} 2)=0.033(2)$	Half-chair	$A^{\wedge} B=125.9(2)$
B	$0.045(1)$	$\Delta_{2}(\mathrm{C})=\overline{0.009(2)}$	Envelope	$A^{\wedge} C=111.9(2)$
C	$0.334(6)$	$\Delta_{2}(\mathrm{C})=156.6(2)$		

The integrated intensities were measured using a modified version (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979) of the Lehmann \& Larsen (1974) peak-profile analysis procedure. A correction was applied for Lorentz and polarization effects but not for absorption. The intensity data of compound (5) were corrected for decay.

Both structures were determined by direct methods with SHELXS86 (Sheldrick, 1986) and refined by anisotropic fullmatrix least squares on F using SHELX76 (Sheldrick, 1976) and on F^{2} (to have a better ratio between the numbers of observations and refined parameters) using SHELXL92 (Sheldrick, 1992). In the refinement on F, the H atoms in both compounds were placed at calculated positions, riding on the C atoms to which they were attached, except for the hydroxy H atoms which were refined isotropically. The H atoms were placed at calculated positions in the F^{2} refinement. The values of the conventional residual-error indices at the end of the F refinements were $R=0.0493, w R=$ 0.0671 for 869 data and 191 parameters for compound (4) and $R=0.0644, w R=0.0609$ for 1495 data and 238 parameters for (5). These compare well with the final $R 1\left[=\Sigma\left|F_{o}-F_{c}\right| / \Sigma\left(F_{o}\right)\right]$ indices obtained in the F^{2} refinements [compound (4): $w R 2(=$ $\left.\left\{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]\right\}^{1 / 2}\right)=0.1219$ for 1147 data (five reflections with $\Delta / \sigma>4$ omitted) and 143 parameters, $w R 2=$ 0.1384 for all 1152 data, $S=0.944, R 1=0.0486$ for $864 F_{o}>$ $4 \sigma\left(F_{o}\right)$; compound (5): $w R 2=0.1635$ for 2715 data (19 reflections with $\Delta / \sigma>5$ omitted) and 177 parameters, $w R 2=0.2305$ for all 2734 data, $S=0.883, R 1=0.0603$ for $\left.1476 F_{o}>4 \sigma\left(F_{o}\right)\right]$.

As expected, the e.s.d.'s from the F^{2} analyses are lower than those from the analyses on F as a result of the larger number of observations and the reduced number of parameters. A further comparison of the results obtained from the two types of analysis is provided by the half-normal probability plots (Abrahams \& Keve, 1971); these were calculated using the program $A B R A-$ HAMS (Gilli, 1977) for all interatomic distances < $4.65 \AA$ (excluding those involving H atoms) according to De Camp (1973) (Figs. $2 a$ and $2 b$) and for the U_{eq} values (Figs. $2 c$ and $2 d$). The relevant parameters of the regression lines through the distributions of points in the two plots for each of the two structures are given below ($i=$ intercept, $s=$ slope, $r=$ correlation coefficient, $N=$ number of observations):

Compound	Fig.	i	s	r	N
(4)	$2(a)$	$-0.09(2)$	$0.89(2)$	0.982	93
	$2(c)$	$-0.10(9)$	$0.93(9)$	0.939	15
(5)	$2(b)$	$0.05(2)$	$1.67(2)$	0.995	123
	$2(d)$	$0.12(3)$	$0.71(3)$	0.981	19

It is apparent from the plots in Fig. 2 that the e.s.d.'s of $U_{\text {eq }}$ are overestimated, particularly for compound (5), while the e.s.d.'s on the distances are overestimated by a factor of about 0.9 for compound (4) and underestimated by a factor of about 1.7 for (5). In neither case are significant differences (i.e. $>3 \Delta / \sigma$) observed between the structural parameters (distances, angles, torsions) derived from the two analyses.

With regard to the comparison of the $U_{\text {eq }}$ values, it is interesting that in the case of compound (4), the $U_{\text {eq }}\left(F^{2}\right)$ values are systematically greater than $U_{\text {eq }}(F)$; the differences are generally less than $\sigma=\left[\sigma^{2}\left(U_{F}\right)+\sigma^{2}\left(U_{F}^{2}\right)\right]^{1 / 2}$, the only exception being for

Fig. 2. Half-normal probability plots comparing the results of the refinements on F and F^{2} : (a) distances in (4), (b) distances in (5), (c) $U_{\text {eq }}$'s in (4) and (d) $U_{\text {eq }}$'s in (5).
the disordered atom C 3 where the difference is $\sim 2.4 \sigma$. Some systematic effect is also present for (5), the intercept being a little greater than zero.

All the structural parameters discussed in the Comment are from the F^{2} refinements.

The calculations were carried out on the ENCORE91 and GOULD-POWERNODE 6040 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma). Material was prepared for publication using PARST (Nardellli, 1983a).

The authors are indebted to Professor G. M. Sheldrick who kindly made his program SHELXL92 available to them at the beta-test stage. Financial support from the European Community Commission under contract No. SCl000657 is gratefully aknowledged.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71019 (44 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1032]

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Belletti, D., Ugozzoli, F., Cantoni, A. \& Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Report 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142-146.
Caubère, P. \& Brunet, J. J. (1972). Tetrahedron, 28, 4835-4845.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dauber, P. \& Hagler, A. T. (1980). Acc. Chem. Res. 13, 105-112.
De Camp, W. H. (1973). Acta Cryst. A29, 148-150.
Dunitz, J. D. \& White, D. N. J. (1973). Acta Cryst. A29, 93-94.
Gilli, G. (1977). ABRAHAMS. Program for calculating half-normal probability plots. Univ. of Ferrara, Italy.
Grégoire, B., Carré, M. C. \& Caubère, P. (1986). J. Org. Chem. 51, 1419-1427.
Hagler, A. T., Huler, E. \& Lifson, S. (1974).J. Am.Chem. Soc. 96, 53195327.

Ianelli, S., Nardelli, M., Belletti, D., Jamart-Grégoire, B., Mouaddib, A. \& Caubère, P. (1992). Acta Cryst. B48, 687-695.
Jamart-Grégoire, B., Brosse, N., Caubère, P., Ianelli, S. \& Nardelli, M. (1991). Tetrahedron Lett. 32, 3069-3070.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
Minato, M., Yamamoto, K. \& Tsuji, J. (1990). J. Org. Chem. 55, 766768.

Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
Nardelli, M. (1983b). Acta Cryst. C39, 1141-1142.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1992). SHELXL92. Program for crystal structure refinement. Univ. of Göttingen, Germany.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). THMV. Program for thermal motion analysis. Univ. of California, Los Angeles, USA.

